Reg. No.:
Name :


TERM END EXAMINATIONS (TEE) - December - January 2021
Programme
Course Name
Faculty Name
Time

Semester
Course Code
Slot / Class No
Max. Marks

Fall 2021-22
MAT1002
A11+A12+A13/0494
50

## Answer ALL the Questions

Q. No.

## PART - A - ( $\mathbf{3} \times 10=\mathbf{3 0}$ Marks $)$

(a) There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily allowance for calories is: Man : 2400, woman : 1900, child : 1800 and for proteins is : Man : 55 gm , woman : 45 gm and child : 33 gm . Represent the above information by matrices. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families.

> OR
(b) Find the Taylor's series expansion of $f(x, y)=\tan ^{-1}(x y)$ in powers of $(x+0.5)$ and $(y-2)$ up to second degree terms. Hence compute $f(-0.4,2.2)$ approximately.

2 (a) If $u=2 a x y, v=a\left(x^{2}-y^{2}\right)$ where $x=r \cos \theta, y=r \sin \theta$ then find the Jacobian of 10 $\frac{\partial(u, v)}{\partial(r, \theta)}$.

## OR

(b) Evaluate the integrals given below
(i) $\int_{1}^{2}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$
(ii) $\int \cos 4 x \cdot \cos 2 x d x$
(iii) $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

3 (a) Find the directional derivative of the surface $\emptyset=x y z$ in the direction normal to the surface $x^{2} y+y^{2} x+y z^{2}=3$ at the point $(1,1,1)$.
(b) Evaluate $\int \cos ^{3} x d x$
i. By reduction formula
ii. By trigonometric formula

Hence find $\int_{0}^{\frac{\pi}{2}} \cos ^{3} x d x$ and verify using Wallis' formula.

$$
\text { Part - B }-(2 \times 10=20 \text { Marks })
$$

4 If $u=\tan ^{-1} \frac{\sqrt{\left(x^{3}+y^{3}\right)}}{(\sqrt{x}-\sqrt{y})}$, then find
a) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$
b) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$

5 Verify Stoke's Theorem, where $\vec{F}=\left(x^{2}+y^{2}\right) \hat{\imath}-2 x y \hat{\jmath}$ and $C$ is the boundary of the 10 rectangle $x= \pm 1, y=0$ and $y=2$.

