

Reg. No.:

TERM END EXAMINATIONS (TEE) – December - January 2021

Programme	B.Tech – Bioengineering	Semester	Fall 2021-22
Course Name	Calculus for Bioengineers	Course Code	MAT1002
Faculty Name	Dr. Neha Choubey	Slot / Class No	A11+A12+A13/0494
Time	1½ hours	Max. Marks	50

Answer ALL the Questions

Marks

PART - A - (3 x 10 = 30 Marks)

1 (a) There are two families A and B. There are 4 men, 6 women and 2 children in family A and 10 2 men, 2 women and 4 children in family B. The recommended daily allowance for calories is: Man : 2400, woman : 1900, child : 1800 and for proteins is : Man : 55 gm, woman : 45 gm and child : 33 gm. Represent the above information by matrices. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families.

OR

- (b) Find the Taylor's series expansion of $f(x, y) = tan^{-1}(xy)$ in powers of (x + 0.5) and (y-2) up to second degree terms. Hence compute f(-0.4, 2.2) approximately.
- (a) If u = 2axy, $v = a(x^2 y^2)$ where $x = rcos\theta$, $y = rsin\theta$ then find the Jacobian of 10 2 $\partial(u,v)$ $\partial(r,\theta)$
 - OR
 - (b) Evaluate the integrals given below

Q. No.

(i)
$$\int_{1}^{2} (xe^{x} + \sin\frac{\pi x}{4}) dx$$

(ii)
$$\int \cos 4x \cdot \cos 2x \, dx$$

(iii)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

(a) Find the directional derivative of the surface $\phi = xyz$ in the direction normal to the surface 10 3 $x^2v + y^2x + yz^2 = 3$ at the point (1,1,1).

10

10

(b) Evaluate $\int cos^3 x dx$

- i. By reduction formula
- ii. By trigonometric formula

Hence find $\int_0^{\frac{\pi}{2}} \cos^3 x dx$ and verify using Wallis' formula.

Part - B - (2 x 10 = 20 Marks)

4 If
$$u = tan^{-1} \frac{\sqrt{(x^3 + y^3)}}{(\sqrt{x} - \sqrt{y})}$$
, then find
a) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$
b) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$

5 Verify Stoke's Theorem, where $\vec{F} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$ and *C* is the boundary of the 10 rectangle $x = \pm 1, y = 0$ and y = 2.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

10