Reg. No.:
Name :

TERM END EXAMINATIONS (TEE) - December 2021

Programme	B.Tech. (All branches)	Semester	Fall 2021-22
Course Name	Introduction to Computational Chemistry	Course Code	CHY1005
Faculty Name	Dr. Sumit Mittal	Slot $/$ Class No	A11+A12+A13/0324
Time	$11 / 2$ hours	Max. Marks	50

Answer ALL the Questions

Q.

No.

Question Description

PART - A- ($\mathbf{3} \times 10=30$ Marks)
1 (a) Solve the following and report the result to the correct number of significant figures:
(i) $\frac{4.625}{1.9}+\frac{1.72325}{0.125}+\frac{14.625}{0.235}$
(ii) $\left(0.152 \times 10^{-3}\right)+\left(5.14 \times 10^{-2}\right)+\left(4.090 \times 10^{-1}\right)$
(iii) $\left(1.01 \times 10^{-3}\right)-\left(1.6 \times 10^{-5}\right)-\left(0.0412 \times 10^{-4}\right)$
(iv) $2.13 \times 6.634 \times 10^{-34}$

OR

(b) Considering all species in their first excited state, calculate the electronic energy for the following reaction: $\mathbf{H e}^{2+}+\mathbf{H} \rightarrow \mathbf{H e}^{+}+\mathbf{H}^{+}$
(a) Consider one mole of an ideal gas that occupies 2 L at 5 atm . This gas is transformed to a state where it occupies 6 L at 5 atm . The gas is further taken to a state where it occupies 6 L at 2 atm . Calculate the work involved in this two-step transformation.

OR

(b) "Hydrogen bond is a special type of dipole-dipole forces and are unusually strong". Justify the statement. Discuss the importance of hydrogen bonding for the structure of proteins.
(a) Discuss, in detail, the various terms that are included in a molecular mechanics based potential energy function.

OR

(b) Enumerate the steps involved in performing molecular dynamics simulation of a chemical system. Discuss the factors that you need to keep in mind while setting up a simulation.

Part - B-(2 x $\mathbf{1 0}=\mathbf{2 0}$ Marks)

4
(i) ATP is the main source of energy for most cellular processes. When the cell needs energy, ATP undergoes hydrolysis to lose one phosphate and is converted into ADP. The $\Delta \mathrm{H}^{\circ}$ for the hydrolysis is $-24 \mathrm{~kJ} / \mathrm{mol}$ and the $\Delta \mathrm{G}^{\circ}$ is $-30 \mathrm{~kJ} / \mathrm{mol}$. Calculate the $\Delta \mathrm{S}^{\circ}$ and K for this reaction at $25{ }^{\circ} \mathrm{C}$.
(ii) When a human being eats chicken, glutamic acid present in chicken is metabolized to glutamine. The $\Delta \mathrm{H}^{\circ}$ for this reaction is $17 \mathrm{~kJ} / \mathrm{mol}$ and the $\Delta \mathrm{S}^{\circ}$ is $10 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$. Calculate the $\Delta \mathrm{G}^{\circ}$ and K for this reaction at $25^{\circ} \mathrm{C}$. Comment on the spontaneity of the reaction.

If nonspontaneous, suggest a method via which the cell can metabolize glutamic acid to generate fuel for different processes.

5 The emission spectrum for a hydrogen-like atom is shown below. The emission spectrum lines correspond to emission for the electron from an excited state to the n $=2$ state.

(i) Suggest the electronic transitions which correspond to lines A and B.
(ii) Given that the wavelength of line A is 150 nm , calculate the wavelength corresponding to line B.
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$

