Reg. No.:	
Name ·	

	TERM END EXAMINATIONS (TEE) – December 2021- January 2022				
Programme	B-Tech (BCY, BAI, BAS, BCG, BEC, BHI, BMR, BSA)	Semester	: Fall 2021-22		
Course Name	: Electric Circuits and Systems	Course Code	: EEE1001		
Faculty Name	:Dr. Abhay Vidyarthi	Slot / Class No	: A11+A12+A13/0045		
Time	: 1 ½ hours	Max. Marks	: 50		

Answer ALL the Questions

Q. No.	Question Description	Marks				
	PART - A (30 Marks)					
1	(a) Use the superposition theorem to find v in the circuit of Fig.1	10				
	$\begin{array}{c c} 8 \Omega \\ \hline 4 \Omega & \downarrow \nu \\ \hline & & & & & & & \\ \end{array}$ Fig.1					
	OR					
	(b) Two inductors are connected in parallel. Their equivalent inductance when the mutual inductance aids the self-inductance is 6 mH and it is 2 mH when the mutual inductance opposes the self-inductance. If the ratio of the self- inductances is 1:3 and the mutual inductance between the coils is 4 mH, find the self-inductances					
2	(a) Explain the working of a 3 phase transformer with the help of a neat sketch.	10				
	OR					
	(b) With the help of a neat sketch, explain the working of any two: I. BJT II. PN Junction Diode III. Rectifier IV. SCR V. MOSFET.	10				
3	(a) Write the truth table of Full Adder and Half Adder and design a Full Adder using two Half Adders and an <i>OR</i> gate	10				
	OR	I				

	(b) To design a 2-bit ripple-up counter using a $J - K$ flip flop	10				
PART - B (20 Marks)						
4	Obtain the Thevenin equivalent network of Fig.2 for the given network at terminals a and b. $ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10				
	Fig.2					
Why the gate to source voltage is not used in an N Channel Depletion type MOSFE pinch –off voltage and what happens to the drain to source current at this pinch – and what is to be done to increase the value of the drain to source current once if it saturation value? Explain the working of N Channel Depletion type MOSFET with a neat sketch						
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$						