Reg. No.:

Name :

Mid-Term Examinations - October 2021

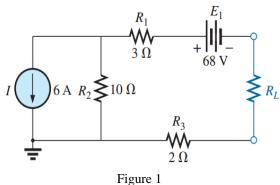
Programme	: B. Tech.	Semester	: Fall 2021-22
Course	: Electric Circuits & Systems	Code	: EEE1001
Faculty	: Mr. Amit Kumar Singh	Slot/ Class No.	: A11+A12+A13/0600
Time	: 1 ½ hours	Max. Marks	: 50

Answer all the Questions

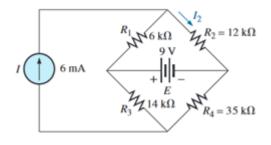
Q.No. Sub. Sec.

Question Description

Marks

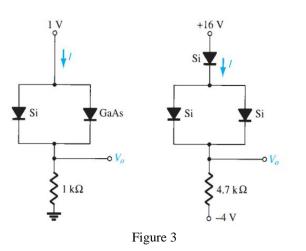

4

6

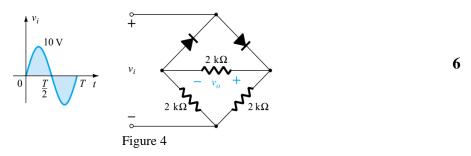

4

1 (a) Derive the condition for the maximum power transfer in a given circuit.

(b) Determine the value of R_L for the maximum power transfer as shown in Figure 1, also find the maximum power transferred to the load.



- 2 (a) A series *RLC* circuit with L = 160 mH, $C = 100 \mu$ F, and $R = 40.0\Omega$ is connected to a sinusoidal voltage $V(t) = 40 \sin \omega t$, with $\omega = 200$ rad/s.
 - 1. What is the impedance of the circuit?
 - 2. Let the current at any instant in the circuit be $I(t) = I0 \sin(\omega t \varphi)$. Find I0.
 - 3. What is the power factor?
 - (b) Using superposition theorem, determine the current I₂ through $R_2 = 12 \text{ K}\Omega$ resistor for the circuit shown in Figure 2.



6

3 (a) Determine the value of " $V_0 \&$ I" in the circuit shown in Figure 3 considering the diodes approximate ideal.

(b) Determine the output waveform (V_0) in the network shown in Figure 4 and calculate the output D.C level and required PIV of each diode?

- 4 (a) Draw the input/ output characteristics of the CE configuration NPN transistor made up with silicon. Also define the term I_{CEO}
 - (b) Explain the working of n-channel D-MOSFET with the transfer characteristics curve
- 5 (a) Design a combinational logic circuit with 3 input variables that will produce logic '1' output when more than one input variables are at logic '0'.
 - (b) Minimize the following Boolean function using K-map and realize it using NAND gates only

F (A, B, C, D) = $\sum (0,2,5,7,11,14)$

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

4

5

5

5

5