	Reg. No.:
STITUTE OF IR	Name :
De DIVINERSITY	BHOPAL www.vitbhopal.ac.in
TERM END EXAM	IINATION (TEE)-DEC-2021

Programme	B.Tech. (All Branches)	Semester	Fall 2021-22
Course Name	Calculus and Laplace Transforms	Course Code	MAT1001
Faculty Name	Dr. Manisha Jain	Slot / Class No	A21+A22+A23 BL2021221000125
Time	1.5 Hrs.	Max. Marks	50

Answer ALL the Questions

Q. No.		Question Description	Marks			
	PART - A $-$ (3 x 10 = 30 Marks)					
1	(a)	Find the Directional Derivative of scalar function $f(x, y, z) = \sqrt{xyz}$ at the point A(2,2,3) in the direction of the outward drawn normal of the surface of the sphere having radius 6 cm through the point P	10			
_		OR				
	(b)	Evaluate the Integral $\int_{0}^{1} \int_{y\sqrt{3}}^{\sqrt{4-y^{2}}} \sqrt{x^{2} + y^{2}} dx dy$ (1) Draw the region (2) High light all important points	10			
2	(a)	Verify Gauss Divergent Theorem $\overline{A} = 4xi - 2y^2j + z^2k$ taken over the region bounded by $x^2 + y^2 = 4, z = 0$ and $z = 3$	10			
-	OR					
	(b)	If $\overline{A} = (2x^2 - 3z)i - 2xyj - 4xk$ and V is the closed region bounded by the planes $x = 0, y = 0$ and $2x + 2y + z = 4$ evaluate $\iiint (\Delta \times \overline{A}) dV$	10			

3	(a)	Solve the differential equation by using variation of parameters method (Write and highlights all important results) $(D^2 + 2D + 2)y = e^{-x} \sec^3 x$	10
		OR	
-	(b)	Solve the following differential equation by using Laplace Transformation	10
		$\frac{d^2x}{dx^2} + 5\frac{dx}{dx} + 6x = 5e^t; x(0) = 2; x'(0) = 1$	
		Part - B - (2 x 10 = 20 Marks)	
4		Calculate the integral $\iint_{2}^{4} \iint_{0}^{x+y} z dx dy dz$	10
		i. Describe the functions properlyii. Draw the figureiii. Correct the order of integration if required	
5	(a)	Solve the differential equation	10
		$\left[x\tan\left(\frac{y}{x}\right) - y\sec^2\left(\frac{y}{x}\right)\right]dx + x\sec^2\left(\frac{y}{x}\right)dy = 0$	
	(b)	By using Laplace Transform find show that	
		$\int_{0}^{\infty} e^{-st} t^{3} \sin t dt = \frac{24s(s^{2}-1)}{\left(s^{2}+1\right)^{4}}$	
		Hence evaluate $\int_{0}^{\infty} e^{-t} t^{3} \sin t dt$	