		:	
		itbhopal.ac.in	
	TERM END EXAMINA	(TEE)-DEC-202	
Programme	B.Tech. (All Branches)	Semester	Fall 2021-22
Course Name	Calculus and Laplace Transforms	Course Code	MAT1001
Faculty Name	Dr. Manisha Jain	Slot / Class No	$\begin{aligned} & \text { A21+A22+A23 } \\ & \text { BL2021221000125 } \end{aligned}$
Time	1.5 Hrs.	Max. Marks	50

Answer ALL the Questions

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$		Question Description	Marks
PART - A - ($\mathbf{3 \times 1 0 = 3 0}$ Marks)			
1	(a)	Find the Directional Derivative of scalar function $f(x, y, z)=\sqrt{x y z}$ at the point $\mathrm{A}(2,2,3)$ in the direction of the outward drawn normal of the surface of the sphere having radius 6 cm through the point P	10
	OR		
	(b)	Evaluate the Integral $\int_{0}^{1} \int_{y \sqrt{3}}^{\sqrt{4-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y$ (1) Draw the region (2) High light all important points	10
2	(a)	Verify Gauss Divergent Theorem $\overline{A=} 4 x i-2 y^{2} j+z^{2} k$ taken over the region bounded by $x^{2}+y^{2}=4, z=0 \text { and } z=3$	10
	OR		
	(b)	If $\bar{A}=\left(2 x^{2}-3 z\right) i-2 x y j-4 x k$ and V is the closed region bounded by the planes $x=0, y=0$ and $2 x+2 y+z=4$ evaluate $\iiint(\Delta \times \bar{A}) d V$	10

3	(a)	Solve the differential equation by using variation of parameters method (Write and highlights all important results) $\left(D^{2}+2 D+2\right) y=e^{-x} \sec ^{3} x$	10
	OR		
	(b)	Solve the following differential equation by using Laplace Transformation $\frac{d^{2} x}{d x^{2}}+5 \frac{d x}{d x}+6 x=5 e^{t} ; x(0)=2 ; x^{\prime}(0)=1$	10
	Part - B - $\mathbf{2} \times 10=20$ Marks $)$		
4		Calculate the integral $\int_{2}^{4} \int_{0}^{x+y} \int_{0}^{x+y} z d x d y d z$ i. Describe the functions properly ii. Draw the figure iii. Correct the order of integration if required	10
5	(a) (b)	Solve the differential equation $\left[x \tan \left(\frac{y}{x}\right)-y \sec ^{2}\left(\frac{y}{x}\right)\right] d x+x \sec ^{2}\left(\frac{y}{x}\right) d y=0$ By using Laplace Transform find show that $\begin{aligned} & \int_{0}^{\infty} e^{-s t} t^{3} \sin t d t=\frac{24 s\left(s^{2}-1\right)}{\left(s^{2}+1\right)^{4}} \\ & \text { Hence evaluate } \int_{0}^{\infty} e^{-t} t^{3} \sin t d t \end{aligned}$	10

