

(b)	(i). Find the Laplace Transform of the functions $\frac{e^{-2 t}-e^{3 t}}{t}$ (ii) Using Laplace transform to find the value of the definite integral for the following functions $\int_{0}^{\infty} e^{-2 t} t$ cost $d t$	$\mathbf{1 0}$
4	(i). The temperature at a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in space is given by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}$. A mosquito located at $(4,4,2)$ desires to fly in such a direction that it gets cooled faster. Find the direction in which it should fly? (ii) In what direction from $(3,1,-2)$ is the directional derivative of $\varphi=\mathrm{x}^{2} \mathrm{y}^{2} \mathrm{z}^{4}$ maximum.	$\mathbf{1 0}$
5	Solve $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{-t}$, given that $y(0)=2, y^{\prime}(0)=3, \quad$ by using \quad Laplace \quad transform Techniques.	$\mathbf{1 0}$

