		Re	eg. No.:			
		Na	ame :			
		B J	VIT [®] HOPAL www.vitbhopal.ac.in			
		TERM END EXAMINATIONS (TER	E) – December 2021- Ja	nuary 2022		
Programme		: BTECH	Semester	: Fall 2021-22		
Course		Calculus and Laplace Transform	Code	: MAT1001	: MAT1001	
Faculty		[:] Dr. Yogesh Shukla	Slot/ Class No.	: A21+A22+A23/BL20 21221000147		
Time		: 1 ½ hours	Max. Marks	: 50		
		Answer ALL th	ne Questions			
Q. No.		Question De	scription		Marks	
		PART - A (3	30 Marks)			
1	(a)	(a) If $x + y = 2e^{\theta} \cos \phi$, $x - y = 2ie^{\theta} \sin \phi$, Prove that $\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$ OD				
	(b)	Given graph is representation of asteroid	$\frac{OK}{r^{2/3} + v^{2/3}} = a^{2/3}$		10	
	-R $-R$ $-R$ $-R$ $-R$ $-R$ $-R$ $-R$					
		(A) Find the coordinate of given graph a (B) Find the total area of asteroid by inte	egral calculus.	h.		
2	(a)	Verify divergence theorem for $\vec{F} = 4xz\hat{\imath} - b$ bounded by the planes $x = 0, x = 2; y = 0, x = 2$	$y^2\hat{j} + yz\hat{k}$ and S the sum y = 2; z = 0, z = 2.	face of the cube	10	
			OR		I	
	(b)	Solve the following linear differential equat $x logx \frac{dy}{dx} + 2y = 2logx$	ion		10	
3	(a)	Solve following Cauchy's Homogeneous Li $x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + 4y =$	near Differential equation = cos(logx) + xsin(logx	on:)	10	
			OR			

	(b) Solve $y'' - 4y' + 4y = 64 \sin 2t$ with $y(0)=0$, $y'(0)=1$ using Laplace transformation.	10
	PART - B (20 Marks)	
4	If $u = f(x, y)$, $x = r\cos\theta$, $y = r\sin\theta$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ Is transformed to the form $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0$	10
5	Find the inverse Laplace transformation of $\frac{5s+3}{(s-1)(s^2+2s+5)}$	10