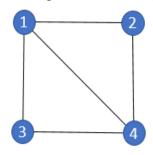
Reg. No.:

Name:

TERM END EXAMINATIONS (TEE) – December 2021- January 2022


Programme	B.Tech – CSE	Semester	Fall 2021-2022
Course Name	Fundamentals in AI & ML	Course Code	CSA2001
Faculty Name	Dr. Durga Prasad Bavirisetti	Slot / Class No	B11+B12+B13/0046
Time	1½ hours	Max. Marks	50

Answer ALL the Questions

Q. No. Question Description Marks

PART - A – (3 x 10 = 30 Marks)

1 (a) What is a Constraint Satisfaction Problem (CSP)? Solve the map coloring problem in the following graph using CSP and intelligent backtracking.

Constraint: No neighbour nodes contain the same colour

10

OR

(b) i. What is an Alan turning test? Discuss various chat boats that attempted this test.

5

ii. Explain the Chinese room test.

5

2 (a) Convert the following statements into FOL and prove by Forward and backward chaining that "John likes peanuts".

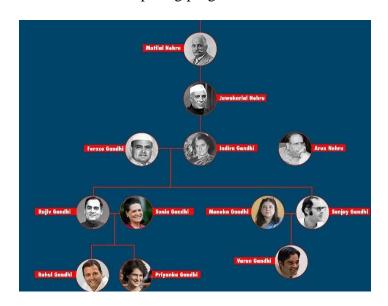
10

John likes all kind of food.

Apple and vegetable are food

Anyone anything eats and not killed is food.

Anil eats peanuts and still alive


Harry eats everything that Anil eats.

OR

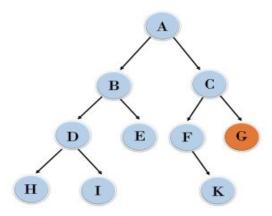
(b) Explain the concept of multi-agent communication in software agents.

10

3 (a) What is recursion? Convert the following family tree using FOL and write the prolog program for recursion.

10

OR


(b) What is classification? Explain the logistic regression technique with an example.

10

Part - B - $(2 \times 10 = 20 \text{ Marks})$

4 Solve the following graph using Breadth first search algorithm with help of queue data structure.

10

Note: A and G are start and goal nodes respectively.

5 Predict the Co2 Emission of a new Car using the Ordinary least squares mathematical approach when the number of cylinders are given as 4.

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

10

