-											
				Re	g. No.:						
				Na	me :						
				VIT VIT NUMERATIV VIT VIT VIT VIT VIT VIT VIT VIT VIT	T [®] PAL						
	Mid-Term Examinations – August 2021										
Progr	amme	:	All B.Tech.	and Integrated M.Tech. Courses	Semester		: Fall 2021-22				
Cour se	e Introduction to Computational Chemistry				Code		[:] CHY1005				
Facul	Faculty : Dr. Satyam Ravi				Slot/Class r	10.	: B21+B22+B23	/ 0328			
Time		:	90 Minutes		Max. Marks	S	: 50				
	Answer all the Questions										
Q.N 0.	Sub Sec.			Question Descripti	otion			Marks			
1	(a) You're given the following information about the scores of different students in CF						students in CHY-				
	100)5 subject. Ca	lculate the standard deviation and t	he variance.							
	Scores					_					
	1 30.0										
	2 32.0										
	3 34.2		1.2								
	4 35.6					7+3					
		5		42.5							
			6	43.2							
		7	12.0								
8 45.9					5.9						
			9	36	6.8						
			10	33	3.3						

	(b)	. In one observation, the time period of complex pendulum is given by $T = K \left(\frac{l}{g}\right)^a$					
		If T is measured in sec then what should be the value of a in order to have correct					
		dimension.					
2		The van der Waals equation of real gas is given by:					
		$\left(P+\frac{a}{m^2}\right)(V-b)=RT$					
			10				
		Determine the units of a, b if P is the pressure, V is volume, R is the gas constant and					
		T is the temperature. You can take the unit of pressure is atm, Volume is litter and T is					
		in Kelvin?					
3	(a)	Discuss the plum pudding model of the atomic structure and write its deficiency?					
	(b)	It takes 285.5 kJ of energy to remove 1 mole of electrons from the atoms on the surface of rubidium metal. If rubidium metal is irradiated with 274-nm light, what is					
	(0)						
		the maximum kinetic energy the released electrons can have?					
4	(a)	An electron in a one-dimensional box requires a wavelength of 100 pm to excite an					
		electron from the $n = 2$ to the $n = 3$ energy level. Calculate the length of this box.					
	(b)	Calculate the energy required to excite the hydrogen electron from level $n = 2$ to lev $n = 3$, as per the quantum model of the hydrogen atom. Also calculate the wavelenge					
		of light that must be absorbed by a hydrogen atom in its 2 nd excited state to reach the					
		third excited state.					
5		The temperature of 1.75 moles of an ideal gas increases from 10.2°C to 48.6°C as the					
		gas is compressed adiabatically. Calculate q, w, ΔU and ΔH for this process, assuming	10				
		that $Cv = 3R/2$; where $R = 8.314 \text{ J/K}$.					