Reg. No.:	
Name :	

TERM END EXAMINATIONS (TEE) –December 2021- January 2022.					
Programme	: B.Tech (All Branches)	Semester	: Fall 2021-2022		
Course	: Introduction to Computational Chemistry	Code	: CHY1005		
Faculty	: Dr. Satyam Ravi	Slot/Class No.	: B21+B22+B23/0328		
Time	: 1½ hours	Max. Marks	: 50		

Answer ALL the Questions

Q. No.	Question Description	Marks			
	PART - A (30 Mar	ks)			
1	(a) In a class of 50, 4 students were selected at random assessments are recorded, which are: 912, 936, 1082 absolute errors, relative error or percentage error of OR	2, 869. Find the standard deviation,			
	OK				
	(b) Light of wavelength 8000 Å is incident on a Potassi wavelength of photo-electrons is 5420 Å. What is the				
2	(a) The temperature of 2.25 moles of an ideal gas increases from compressed adiabatically. Calculate q, w, ΔU and ΔH for $5R/2$; where $R=8.314$ J/K.				
OR					
	(b) Calculate the total number of bond distance, bond a acetylene molecule. Write down the potential energy mechanics approach.				
3	(a) Explain the different Intermolecular Forces with one dipole, H-bond, London dispersion, ion-induced diprelative strength of intermolecular forces.				
	OR				
	(b) To study the hydrophobic effect in a protein, what no Quantum mechanical 2. Molecular dynamics. Justif perspective of computational cost.	3			

4	a. Write the Schrodinger Equation of the following system	5+5
	a. Particle in a box	
	b. H atom	
	b. Calculate the number of radial and angular nodes and the	
	angular momentum of the following orbitals-	
	1. 4s	
	2. 3d	
5	Draw the dissociation curve of H ₂ molecule. Write down the expression for the Morse potential.	10