Reg. No.:
Name:

Mid-Term Examinations - November 2021

Programme	:	B. Tech.	Semester	:	Fall 2021-22
Course	:	Introduction to Computational Chemistry	Code	:	CHY1005
Faculty	:	Dr. Saurav Prasad	Slot/ Class No.	:	B21+B22+B23/0322
Time	:	1 ½ hours	Max. Marks	:	50

Answer all the Questions

Sub. **Question Description** Q.No. Marks Two resistors of resistances $R_1 = 200 \pm 3$ ohm and $R_2 = 300 \pm 4$ ohm are connected (a) 1 in series, (b) in parallel. Find the equivalent resistance of the (a) series combination, (b) parallel combination. Use 10 for (a) the relation $R = R_1 + R_2$, and for (b) $\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2}$ and $\frac{\Delta R^1}{R'^2} = \frac{\Delta R_1}{R_1^2} + \frac{\Delta R_2}{R_2^2}$. A famous relation in physics relates 'moving mass' m to the 'rest mass' m_o of a particle 2 (b) in terms of its speed v and the speed of light, c. Soumili recalls the relation almost correctly but forgets where to put the constant c. She writes: $m = \frac{m_0}{\left(1 - v^2\right)^{1/2}}$ 5 Guess where to put the missing c with proper reasoning. State the number of significant figures in the following: (a) 0.007 m^2 (b) 0.2370 g cm^{-3} 5 (c) 6.320 J (d) 6.032 N m^{-2} (e) 0.0006032 m^2 3 Calculate the percentage change in a given energy level of a particle in a cubic box 10 when the length of the edge of the cube is decreased by 10 percent in each direction. The normalized wavefunctions for a particle confined to move on a circle are $\psi(\phi)$ = 4 $\left(\frac{1}{2\pi}\right)^{1/2}e^{-im\phi}$, where $m=0,\pm 1,\pm 2,\pm 3,\ldots$ and $0\leq\phi\leq 2\pi$. Determine $\langle\phi\rangle$ 10 (expectation value of ϕ). The operator for ϕ is just multiplication by ϕ . Can heat flow spontaneously from hot body to cold body? Which law of 5 (a) 5 thermodynamics explains this phenomenon? Explain in detail. Do all spontaneous reactions lead to an increase in entropy of the system? Justify your (b) 5 answer.