#### Reg. No.:

Name :



## **TERM END EXAMINATIONS (TEE) – December 2021-January 2022**

| Programme    | <b>B.Tech</b>                  | Semester           | Fall 2021-2022                  |
|--------------|--------------------------------|--------------------|---------------------------------|
| Course Name  | Calculus and Laplace Transform | <b>Course Code</b> | MAT1001                         |
| Faculty Name | Dr. Anant Kant Shukla          | Slot / Class No    | C11+C12+C13/BL2021<br>221000132 |
| Time         | 1½ hours                       | Max. Marks         | 50                              |

### Answer ALL the Questions

Q. No.

# Question Description PART - $A - (3 \times 10 = 30 \text{ Marks})$

1 (a) Find the directional derivative of the scalar function  $f(x, y) = x^2y^3 + xy - 5$ , in the 10 direction of a unit vector which makes an angle of 30° with the positive x -axis in the *XY*-palne.

### OR

- (b) Find the value of the double integral  $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ , by changing the order of 10 integration.
- 2 (a) By using Gauss-Divergence theorem find the value of the surface integral  $\iint_S \vec{F} \cdot \vec{n} \, dS$ , 10 where  $\vec{F} = [8x, -2y^2, z^2]$  and S is  $x^2 + y^2 = 8, z = 0, z = 3$ .
  - (b) Solve the differential equation y''(t) + y'(t) 2y(t) = 1 2t, y(0) = 0, y'(0) = 4 by 10 using the Laplace transform.
- 3 (a) Check whether the function  $e^{3x}$  is an integrating factor for the differential equation 10  $(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0$ . If yes, then find the respective exact differential equation and its solution when y(0) = 0.
  - OR
  - (b) Let  $f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 2 t, & 1 \le t \le 2 \end{cases}$  be a periodic function with period T = 2. Find the Laplace 10 transform of f(t).

### **Part - B - (2 x 10 = 20 Marks)**

- <sup>4</sup> Evaluate the line integral  $\int_C \vec{F} \cdot d\vec{r}$ , where  $\vec{F} = [xy, x^2 + y^2]$  and *C* is the *x*-axis from 10 x = 2 to x = 4 and the line from y = 0 to y = 12.
- 5 Find the solution of the differential equation  $y''(x) + 8y'(x) + 16y(x) = 5e^{-4x}$  by the 10 method of undetermined coefficients.

 $\Leftrightarrow$ 

Marks