Reg. No.:	
Name:	

Programme	:	ВТЕСН	Semester	: Fall 2021-22
Course	:	Calculus and Laplace Transform	Code	: MAT1001
Faculty	:	Dr. Yogesh Shukla	Slot/ Class No.	: D11+D12+D13/BL20 21221000491
Time	:	1 ½ hours	Max. Marks	: 50

Answer ALL the Questions

Q. No.	Question Description	Marks			
	PART - A (30 Marks)				
1	If $\theta = t^n e^{\frac{-r^2}{4t}}$, where θ is dependent on t and r. Then find the value of n which makes $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$	10			
	OR				
	(b) Find the volume of common area given in following graph which is bounded by the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$	10			
2	(a) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$ taken round the reactangle bounded by the lines $x = \pm a, y = 0, y = b$.	10			
	OR	10			
	(b) Identify the type of linear differential equations and solve $\frac{dy}{dx} = \frac{2x - 5y + 3}{2x + 4y - 6}$	10			

3	(a)	Solve the following differential equation	10			
		$\left(\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3y\right) = x^2 + \cos x$				
OR						
	(b)	Using Laplace Transform, solve the ODE $y'' + 2y' + 5y = 3e^{-t} \sin t, if \ y(0) = 0, y'(0) = 1$	10			
		PART - B (20 Marks)				
4		If $v = r^m$, $r^2 = x^2 + y^2 + z^2$, then show that $v_{xx} + v_{yy} + v_{zz} = m(m+1)r^{m-2}$	10			
5	j	Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$	10			
	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$					