		Reg. No.:			
		Name :			
		VIT BHOPAL www.vitbhopal.ac.in			
		TERM END EXAMINATIONS (TEE) – December 2021- Jan	uary 2022		
Programme		: B.Tech Semester	: Fall 2021-22	2	
Course		: ELECTRIC CIRCUITS AND SYSTEMS Code	: EEE1001		
Faculty		: Prof. Mayank Gupta Slot/ Class No.	: D11+D12+D	013/0057	
Гime		: 1 ½ hours Max. Marks	: 50		
	I	Answer ALL the Questions			
Q. No.		Question Description		Marks	
		PART - A (30 Marks)			
1	(a)	Apply Norton's theorem to determine the current flowing through the connected across the terminals. A and B. Also calculate the potential will be the current through the 6 Ω resistor across AK as shown in fig 10 A 2Ω 6Ω $=$ 12 V $Figure 1$	of point A. What	10	
	(b) A series-connected DC motor has an armature resistance of 3.0 ohm and field winding resistance of 2.5 ohm. In driving a certain load at 1200 rpm, the current drawn by the motor is 12A from a voltage source of VT = 120V. The rotational loss is 440W. Find the output power and efficiency.			10	
2	(a)	A rectangular shape iron core has an air gap of 0.02 cm. The mean 1 path through iron is 10 cm. The relative permeability of iron is 1500. The turns. The cross-sectional area of the core is 5 cm. Calculate the cuproduce a flux of 2 mWb in the core.	The coil has 1000	10	
	 (b) Draw and clearly identify which of the parts in DC Motor are rotating and which of them are stationary. Explain importance of each part. 				
3	(a)	Draw and explain the circuit for a bridge rectifier and draw the input as waveforms.	nd output voltage	10	
	OR				
	(b)	Design a 4x1 multiplexer using AND and OR gate configuration, e selection input works with truth table.	explain how data	10	

4	The resistance of the various arms of a Wheatstone bridge are shown in Figure 2. The battery has an EMF of 2 V and negligible internal resistance. Using Thevenin's theorem, determine the value and direction of the current in the galvanometer circuit BD. $ \begin{array}{c} $	
5	Design a half adder using NAND – NAND logic also explain the truth table.	10
	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	