Reg. No.:

Name :

Mid-Term Examinations – November 2021							
Programme	:	B. Tech	Semester	:	Fall Semester 2021-22		
Course	:	Electric Circuits and Systems	Code	:	EEE1001		
Faculty	:	J. Sharmila Joseph	Slot/ Class No.	:	E11+E12+E13/0158		
Time	:	1 ¹ / ₂ hours	Max. Marks	:	50		

Answer all the Questions

O N.	Sub.
Q.No.	Sec.

Question Description

Marks

10

1 Find the current flowing through 10Ω resistor in the network shown below using Thevenin's theorem and draw the Thevenin equivalent circuit.

2 (a) In the circuit shown below, the switches can be opened or closed to control the current through R_3 . Calculate the current through R_3 for all combinations of the switches being open closed.

5

- (b) A 230 V, 50 Hz ac supply is applied to a coil of 0.06 H inductance and 2.5 resistance connected in series with a 6.8μF capacitor. Calculate (i) Impedance (ii) Current (iii) 5
 Phase angle between current and voltage (iv) power factor.
- 3 Which is the most preferred configuration in transistor for amplification and Why? Draw its circuit diagram and analyse the input and output characteristics. **10**
- 4 A 5.0V stabilized power supply is required to be produced from a 12V DC power supply input source. The maximum power rating P_Z of the Zener diode is 2W. Using the Zener regulator circuit below, Calculate
 - 1. The maximum current flowing through the Zener diode
 - 2. The minimum value of the series resistor R_S
 - 3. The load current I_{L} , if the resistor of $1K\Omega$ is connected across the Zener diode.
 - 4. The Zener current I_Z at full load.

5 (a) Simplify the logic circuit shown below.

(b) Implement an inverter using only NAND gate

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Note:

RBT – Revised Bloom's Taxonomy

KL1 – Remember, KL2-Understand, KL3-Apply, KL4-Analyse, KL5-Evaluate, KL6-Create CO – Course Outcome

2