		Reg. No.:		
		Name :		
www.vitbhopal.ac.in				
TERM END EXAMINATIONS (TEE) - December 2021- January 2022				
Programme	: B.Tech. - All Branches		Semester	: Fall 2021-22
Course Name	: Calculus \& Laplace Transform		Course Code	: MAT 1001
Faculty Name	: Dr. Akshara Makrariya		Slot / Class No	: E11+E12+E13 / 0142
Time	: 1112 hours		Max. Marks	:50
Answer ALL the Questions				

Q. No.

Question Description

Marks

PART - A (30 Marks)

1. (a) If $z=f(x, y), x=r \cos \theta, y=r \sin \theta$, then show that

$$
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}
$$

(b) Find the volume of the solid that lies under the hyperbolic paraboloid $z=4+x^{2}-$ y^{2} and above the square $R=[-1,1] \times[0,2]$.
(a) Evaluate $\iint \vec{F} . \hat{n} d s$ where $\vec{F}=4 x \vec{\imath}-2 y^{2} \vec{\jmath}+z^{2} \vec{k}$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$.

OR

(b) Find the solution of differential equation $\left(D^{2}-2 D+1\right) y=e^{x}\left(3 x^{2}-2\right)$.
(c) . Solve the Initial value problem $4 y^{\prime \prime}+4 y^{\prime}+37 y=12 \cos t$ with $y(0)=1, y^{\prime}(0)=$ -2 .
3 (a) Solve the equation $y^{\prime \prime}+9 y=\cos 2 t, y(0)=1$ and $y\left(\frac{\pi}{2}\right)=-1$ using Laplace transform.

OR

(b) This problem gauges the relative effects of initial position and velocity on the motion in the unforced, overdamped case. Solve the initial value problems $y^{\prime \prime}+4 y^{\prime}+2 y=$ $0, y(0)=5, y^{\prime}(0)=0$.

PART - B (20 Marks)

4(a) Evaluated the double integral $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$, where D is the region bounded by $y=x, y=2 x \& x=1$ in the first quadrant
4(b) Calculate the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $x y z=a^{3}$
5 Consider overdamped forced motion governed by $y^{\prime \prime}+6 y^{\prime}+2 y=4 \cos (3 t)$.
(a) Find the solution satisfying $y(0)=6, y^{\prime}(0)=0$.
(b) Find the solution satisfying $\quad y(0)=0, y^{\prime}(0)=6$.

