Reg. No.:	
Name :	

$Mid\text{-}Term\ Examinations\ -\ August\ 2021$

Programme	:	All B.Tech. and Integrated M.Tech. Courses	Semester	:	Fall 2021-22
Cour se	:	Introduction to Computational Chemistry	Code	:	CHY1005
Faculty	:	Dr. Satyam Ravi	Slot/Class no.	• •	E21+E22+E23 / 0327
Time	:	90 Minutes	Max. Marks	:	50

Answer all the Questions

Q.N o.	Sub Sec.	(higgion Haggrintian	
1	(a)	In the last year, during the mid-semester the first five students of CHY-1005 scored the following numbers: 32, 29, 33, 33, 38, 40, 36, 38, 40 and 42. Calculate the <i>standard deviation and variance</i> for this data.	5+5
	(b)	Mr. X measures the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be 3.63 s, 4.56 s, 5.42 s, 4.71s and 1.80 s. Calculate the absolute errors, relative error and percentage error.	
2	(a)	The energy 'E' of a particle depends upon the time 't' and velocity 'v' according to the equation $E(t) = a(t) * v^2 + bt^3$ Determine the units of a , b . All have SI units.	6+4
	(b)	Each side of a cube is measured to be 5.32345 m. What are the total surface area and the volume of the cube to appropriate significant figures?	
3	(a) (b)	Discuss the nuclear model of the atomic structure and write its deficiency? Light with a wavelength of 300. nm is incident on a potassium surface for which the work function is 2.26 eV. Calculate the kinetic energy and speed of the ejected	5 + 5
		Prove the wave function and probability distribution of a portiols in 1D have for n = 10	
4	(a)	Draw the wave function and probability distribution of a particle in 1D box for $n = 10$ and $n = 2$. Please comment when n increases then how quantum mechanical results will change?	2

	(b)	Calculate the number of radial and angular nodes in the following orbitals –	
		1. 3s	8
		2. 3f	
		3. 4p	
		4. 3d	
5		$2.50 \text{ mol of an ideal gas with } C_{v,m} = 12.47 \text{ J mol}^{-1} \text{ K}^{-1} \text{ is expanded adiabatically against}$	
		a constant external pressure of 1.00 bar. The initial temperature and pressure of the gas	
		are 325 K and 2.50 bar, respectively. The final pressure is 1.25 bar and final temperature	10
		is 268 K. Calculate the final q, w.	