Reg. No.:
Name :

TERM END EXAMINATIONS (TEE) - December 2021- January 2022

Programme	$:$B.Tech [BAC, BAI, BAS, BCE, BCG, BEC, BHI, BMR, BOE, BSA, MEI]	Semester	$:$ Fall 2021-22
Course Name	$:$ Electric Circuits and Systems	Course Code	$:$ EEE1001
Faculty Name	$:$ Dr. Baldev Swamy	Slot / Class No	$:$ E21+E22+E23/0085
Time	$: 11 / 2$ hours	Max. Marks	$\mathbf{5 0}$

Answer ALL the Questions

PART - A (30 Marks)

1 (a) Solve the given network circuit shown in Fig. 1 by using Nodal analysis to find V1, V2, V3 and V4 and also find the current passing through each branches of resistor elements?

Fig. 1
OR
(b) A horse-shoe-type iron-core electromagnet is wound with 1000 turns and is required to lift heavy iron bars of 100 kg each time. The area of a cross section of each of the poles of the horseshoe magnet is $0.01 \mathrm{~m}^{2}$. The mean length of the flux path through the electromagnet is 0.5 m . The relative permeability of the flux path is 2000 . Calculate the value of the excitation current through the coil.
2 (a) The maximum flux density in the core of a $1100 / 220 \mathrm{~V}, 50 \mathrm{~Hz}, 100 \mathrm{kVA}$ transformer is $3.5 \mathrm{~Wb} / \mathrm{m} 2$. Calculate the area of cross section of the core and the number of turns of the primary and secondary windings if the EMF per turn is 5.5 V .

OR
(b) Calculate the a.c. voltage required to a half-wave rectifier supplied by 75 V d.c. to a resistive load of 650Ω shown in below Fig. 2. The diode has a resistance of 15Ω.

Fig. 2
3 (a) Evaluate the voltage gain of the given below circuit by using the CB configuration and consider the alpha (α) value is 1 shown in below Fig. 3?

Fig. 3
OR
(b) Analyse the characteristics of the device which is like a heavily doped PN junction diode to conduct in the reverse direction when a certain specified voltage reached.

PART - B (20 Marks)

4 In the given below Fig. 4, switch is open since a long time and it is closed at $\mathrm{t}=0$.
Find the current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t} \geq 0^{+}$

Fig. 4
5 Design a combinational logic circuit that produces the product of two numbers $A=$ ($a 1 a 2$) and $B=(b 1 b 2)$. The product is in the form $\mathrm{P}=(p 1 p 2 p 3 p 4)$ where $a 1, b 1$ and $p 1$ are the most significant digits. Give the expressions of $p 1, p 2, p 3$ and $p 4$ and simplify using Karnaugh-maps.
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$

