Reg. No.:

Name :

Mid-Term Examinations – November 2021

Programme	B. Tech.		Semester	:	Fall 2021-22
Course	Introduction	to Computational Chemistry	Code	:	CHY1005
Faculty	Dr. Saurav P	rasad	Slot/ Class No.	:	E21+E22+E23/0321
Time	1 ½ hours		Max. Marks	:	50

Answer all the Questions

O No	Sub.
Q.No.	Sec.

Question Description

Marks

5

5

- 1 Suppose you are told that the acceleration a of a particle moving with uniform speed vin a circle of radius r is proportional to some power of r, say r^n , and some power of v, say v^m . How can you determine the values of n and m?
- 2 (a) The temperatures of two bodies measured by a thermometer are $t_1 = 25 \ ^0C \pm 0.7 \ ^0C$ and $t_2 = 52 \ ^0C \pm 0.6 \ ^0C$. Calculate the temperature difference and the error therein.
 - (b) Solve (show intermediate steps too) and report as per the correct number of significant figures:

(i)
$$\frac{2 \cdot 45 + 6 \cdot 89}{4 \cdot 001} + 4.67$$

(ii)
$$8 \cdot 61 \times 2 \cdot 215 - \frac{3.456}{2.54}$$

3

Laplacian operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in spherical polar coordinates is given by

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial^2 \phi}.$$
 10

Show that function $\frac{\sin\theta\sin\phi}{r^2}$ is an eigenfunction of the Laplacian operator and find the corresponding eigenvalue.

The ground-state wavefunction for a particle confined to a one-dimensional box of length L is $\psi = \sqrt{\frac{2}{l}} \sin\left(\frac{\pi x}{l}\right)$. Suppose the box is 10.0 nm long. Calculate the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) in the right half of the box. Use: $\cos(2x) = 1 - 2\sin^2 x$

5 How can Gibb's free energy of the system and entropy of the universe be used to determine the spontaneity of a chemical process? Derive the relation between them. A reaction with $\Delta H = +21 \ kJ \ mol^{-1}$ and $\Delta S = +41 \ J \ K^{-1} \ mol^{-1}$ is non-spontaneous at room temperature. Find the temperature above which the reaction will be spontaneous.

$$\Leftrightarrow \Leftrightarrow \Leftrightarrow$$