Reg. No.:
Name :

TERM END EXAMINATIONS (TEE) - January 2021

Programme
Course Name
Faculty Name Time

B.Tech - CSE Health Informatics
Introduction to Calculus
Dr. Neha Choubey $11 / 2$ hours

Semester
Course Code
Slot / Class No
Max. Marks

Fall 2021-22
MAT1031
F11+F12+F13/0613
50

Answer ALL the Questions

Q. No.

PART - A-(3x $\mathbf{1 0}=\mathbf{3 0}$ Marks $)$

1 (a) Divide the profit of the company 120 into three criteria a, b and c so that the sum of their products taken two at a time shall be maximum.

OR
(b) If $u=\sec ^{-1} \frac{\left(x^{3}+y^{3}\right)}{(x-y)}$, then find
a) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$
b) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$

2 (a) Chose the correct order of integration from the following figure to evaluate the integral
$\iint_{R} y e^{x^{2}} d A$

OR
(b) Evaluate the integral by changing it into polar form $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d y d x$.
(a) Find the equation of the plane to calculate the volume of the tetrahedron given in the 10 following figure and bounded by the coordinate axis and plane

OR
(b) Find the algebraic multiplicity and geometric multiplicity of an eigen value of the matrix

$$
A=\left[\begin{array}{ccc}
-3 & -7 & -5 \\
2 & 4 & 3 \\
1 & 2 & 2
\end{array}\right]
$$

and also show that geometric multiplicity is less than the algebraic multiplicity.

$$
\text { Part - B - }(2 \times 10=20 \text { Marks })
$$

4 (i) Determine the slope of the curved surface in the constant $y=1.983$ plane at ($5.6380,1.983$). The 3D surface is $f(x, y)=x^{7}+5 x^{3} y-y^{3}$.
(ii) The surface area (in square meters) of a particular mammal is approximated by the function $A(m, h)=\frac{7}{3} m^{0.658} h^{0.189}$, where m is the mass of the mammal (in kg) and h is the height (in meters). Evaluate $\frac{\partial A}{\partial m}$ and $\frac{\partial A}{\partial h}$, when $m=30$ and $h=$ 10.

Determine the values of α and β for which the system

$$
\left[\begin{array}{ccc}
4 & -1 & 0 \\
-1 & 5 & -2 \\
0 & 2 & \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\beta \\
0 \\
-8
\end{array}\right]
$$

has
i. Unique solution
ii. Infinite solution
iii. No solution.

