Reg. No.:
Name :

Mid-Term Examinations, November 2021

Programme	$:$ B.Tech - CSE Health Informatics	Semester	$:$ Fall 2021-2022
Course	: Introduction to Calculus	Code	$:$ MAT1031
Faculty	$:$ Dr. Neha Choubey	Slot/Class No.	$:$ F11+F12+F13/0613
Time	$: 111 / 2$ hours	Max. Marks	$: \mathbf{5 0}$

Answer all the Questions

Q. No.

Question Description

1 The Waverley can reach its top speed in 10 minutes. During that time its distance from the start can be calculated using the formula $D=\log t+50 t^{3 / 2}$ where t is the time in minutes and D is measured in metres. What is the Waverley's top speed? How fast is it accelerating?

2
Is the function $f(x, y)=\left\{\begin{array}{l}\frac{x}{\sqrt{x^{2}+y^{2}}},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$ continuous at the origin? Redefine the function if necessary to make it continuous.

3
The pressure P at any point (x, y, z) in space is $P=800 x y z^{2}$. Find the highest pressure at the surface of a unit sphere $x^{2}+y^{2}+z^{2}=5$.

4 Find the rate at which the area of a rectangle is increasing at a given instant when the sides of a rectangle are 4 ft and 3 ft and are increasing at the rate of $1.5 \mathrm{ft} / \mathrm{sec}$ and $0.5 \mathrm{ft} / \mathrm{sec}$ respectively.

The time T of a complete oscillation of a simple pendulum of length L is governed by the equation $T=2 \pi \sqrt{\frac{L}{g}}$ where g is constant. Find the approximate error in the calculated value of T corresponding to an error of 2% in the value of L.

6 If $\int_{0}^{a}\left(x^{2}-3 x+2\right) d x=\frac{3}{2}$ then find the integer value of a.

