

3	(a)	```What will be output after executing the following segments of code? i. import array as arr new_arr=arr.array('i', [1,3, 89,7,88, 76]) print(res_arr=new_arr[::-1]) ii. import numpy as test in_arr = test.array([2, 0, 1, 5, 4, 9, 6, 3, 7]) print(out_arr = test.partition(in_arr, 4)) ii. import array as myarr a=myarr.array('b', [3,6,4,8,10,12,14,16,18,20]) a[8]=77 print(a) iv. arr = [25, 11, 7, 75, 56, 77, 76, 8] min = arr[0] for i in range(0, len(arr)): if(arr[i] > min): min = arr[i] print(min)```	10
	OR		
	(b)	Discuss the problem of removing duplicates from a sorted array in Python. Mention the need of taking an auxiliary array in the algorithmic solution of removal of duplicates. Create a function in Python to implement the algorithm required to perform the above task.	10
	PART - B (20 Marks)		
	4	Use the prime factorization and Euclidian algorithm methods to find $\operatorname{GCD}(\mathbf{6 0 3}, 72)$, and write the recursive and iterative Python codes corresponding to Euclidian algorithm method.	10
	5	With the help of example in each case, mention the main characteristics of the following Python standard random module library functions. i. random. randrange() ii. random.randint() iii. random.uniform() iv. random.choice() v. random.choices()	10
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$			

