

Mid Term Examinations – November 2021

Programme	:	B. Tech	Semester	:	Fall 2021-2022
Course	:	Calculus and Laplace Transform	Code	:	MAT1001
Faculty	:	Dr. Anant Kant Shukla	Slot/Class No.		C11+C12+C13/BL2021 221000132
Time	:	1 ¹ / ₂ hours	Max. Marks	:	50

Answer all the Questions

Q. No.

Question Description

Marks

10

05

Suppose, you are in charge of erecting a radio telescope on a newly discovered planet. To minimize interference, you want to place radio telescope, where the magnetic field of the planet is weakest. Suppose, the planet is spherical with a radius of 6 units. Based on a coordinate system whose origin is at the centre of the planet, the strength of magnetic field is given by $6x - y^2 + xz + 60$. Where should you locate the radio telescope?

2 If
$$z = f(x, y)$$
 and $x = \frac{r}{2}(e^{\theta} + e^{-\theta})$, $y = \frac{r}{2}(e^{\theta} - e^{-\theta})$, then prove that $z_x^2 - z_y^2 = z_r^2 - r^{-2}z_{\theta}^2$. 10

- 3 Find area of the plane region bounded by the graph of $x = y^2$, y x = 3, y = -3 and y = 2.
- Find the volume of the solid which is below the surface z = 2x + 3 and above the xy -plane bounded by $y^2 = x, x = 0 \& x = 2$.

5 (a)Evaluate
$$\int_{(0,0)}^{(2,1)} [(10x^4 - 2xy^3)dx - 3x^2y^2dy]$$
 along the path $x^4 - 6xy^3 = 4y^2$. 05

(b)Evaluate $\oint_C \vec{r} \cdot d\vec{r}$ where the notation \vec{r} and C have their usual meanings.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$