Reg. No.:	
Name :	

Mid-Term Examinations – October 2021

Programme	:	ВТЕСН	Semester	:	Fall 2021-22
Course	:	Calculus and Laplace Transform	Code	:	MAT1001
Faculty	:	Dr. Yogesh Shukla	Slot/ Class No.		A11+A12+A13/BL2021 221000146
Time	:	1½ hours	Max. Marks	:	50

Answer all the Questions

1		
	If $\theta = t^n e^{\frac{-r^2}{4t}}$, where θ is dependent on t and r . Then find the value which makes	e of n 10
	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$ If $x^2 + y^2 + z^2 - 2xyz = 1$, then show that	
2	If $x^2 + y^2 + z^2 - 2xyz = 1$, then show that $\frac{dx}{\sqrt{1 - x^2}} + \frac{dy}{\sqrt{1 - y^2}} + \frac{dz}{\sqrt{1 - z^2}} = 0$	10
3	Change the order of integration to evaluate $\iint \frac{x dy dx}{\sqrt{x^2 + y^2}}$ over the region bound	
4	by the given curves $x = 0$, $x = 1$, $y = x$, $y = \sqrt{2 - x^2}$ Find the volume of common area given in following graph which is bound the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$	led by
5	If the vector $\vec{F} = (ax^2y + yz)\hat{\imath} + (xy^2 - xz^2)\hat{\jmath} + (2xyz - 2x^2y^2)\hat{k}$ is solenoidal, find the value of a. Find also the curl of this solenoidal vector.	10