		Reg. No.:	
		Name :	
		VIT BHOPAL www.vitbhopal.ac.in	
		Mid-Term Examinations – October 2021	
Progra	mme	: BTECH Semester : Fall 2021-22	
Course	e	: Calculus and Laplace Transform Code : MAT1001	
Facult	У	: Dr. Yogesh Shukla Slot/ Class No. :: A21+A22+A23/BI 221000147	L 202 1
Time		: 1 ¹ / ₂ hours Max. Marks : 50	
		Answer all the Questions	
Q.No.	Sub. Sec.	Question Description	Marks
1		If function $u = (1 - 2xy + y^2)^{-1/2}$ where u is dependent on x and y then prove that $\frac{\partial}{\partial x} \left\{ (1 - x^2) \frac{\partial u}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ y^2 \frac{\partial u}{\partial y} \right\} = 0$	10
2		$\frac{\partial_{X} \left((1 - x - y_{\partial X}) + \frac{\partial_{Y} \left(y - \frac{\partial_{Y}}{\partial y} \right)}{\partial y} \right)^{-0}}{\text{If Z is dependent variable on two independent variables x and y as}$ $z = f(x, y), \text{ where } x = e^{u} + e^{-v}, y = e^{-u} - e^{v}$ $\text{, show that } \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v}$	10
3		Find the area by double integration ,the smaller of the areas bounded by the circle $x^2 + y^2 = 9$ and the straight line $x + y = 3$.	10
4		Find the volume which is bounded by ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ As given in following figure	10
5		Find the value of n for which the vector $r^n \vec{r}$ is solenoidal ,where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.	10
		<u> </u>	