Reg. No.:	
Name :	

Mid-Term Examinations – October 2021

Programme	:	ВТЕСН	Semester	:	Fall 2021-22
Course	:	Calculus and Laplace Transform	Code	:	MAT1001
Faculty	:	Dr. Yogesh Shukla	Slot/ Class No.		D11+D12+D13/BL2021 221000491
Time	:	1½ hours	Max. Marks	:	50

Answer all the Questions

	Sec.	Question Description	
1		If $x + y = 2e^{\theta} \cos \emptyset$, $x - y = 2ie^{\theta} \sin \emptyset$, Prove that $\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$	10
2		Show that the function $u = log(\frac{1}{r})$, where $r = \sqrt{(x-a)^2 + (y-b)^2}$ satisfies the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	10
3		Given graph is representation of asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ (A) Find the coordinate of given graph and also labelled the graph. (B) Find the total area of asteroid by integral calculus.	10
4		Find the volume of region bounded by elliptic paraboliods: $z = x^2 + 9y^2$ and $z = 18 - x^2 - 9y^2$.	10
5		Prove that $div(r^nR) = (n+3)r^n$. Hence show that $\frac{R}{r^3}$ is solenoidal.	10