Reg. No.:

Name :

VIT $^{\text {® }}$
B H O P AL
www.vitbhopal.ac.in
MID TERM EXAMINATIO - OCTOBER 2021

Programme	$:$ B.Tech. (All Branches)	Semester	FALL 2021-22
Course	$:$ Calculus and Laplace Transform	Code	MAT1001
Faculty	$:$ Dr. Manisha Jain	Slot/Class Number	$:$
			A21+A22+A23
Time	$: \mathbf{1 1 / 2}$ hours	Max. Marks	$\mathbf{5 0}$

Answer all the Questions

Q.No.	Question Description	Marks
1.	If $x^{2}=a m+b n, y^{2}=a m-b n$ and V is a function of x and y find the value of i. $\quad x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}$ ii $\quad m \frac{\partial V}{\partial m}+n \frac{\partial V}{\partial n}$ Is there any relation between both the results?	10
2	Consider a sphere of unit sphere from the origin in $x-y-z$ space. Find the minimum and maximum distance of the point $(3,4,12)$ from the sphere by using Lagrange's Multiplier.	10
3	By using the concept of change the order of integration evaluate the following (refer the figure) by assuming $f(x, y)=1$ (i) Evaluate area for the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ (ii) Evaluate area for the function $\mathrm{x}=\mathrm{f}(\mathrm{y})$ (iii) Write all necessary mathematical expressions	10
4	Find the mass M of the tetrahedron bounded by the coordinate planes and the plane as shown in the figure.	10

	given that the density F at any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is $m x y z$	
5	A particle moves along the curve $x=e^{-t}, y=2 \cos 3 t$, where t is the time. Determine at $t=0$ its (i) Velocity and acceleration vectors (ii) Magnitude of Velocity and acceleration vectors (iii) Components of Velocity and acceleration vectors In the direction of the vector $2 i-4 j+6 k$	10

