		Reg. N	lo.:		
		Name	:		
		VIT VIT BHC www.vit	IT [®] DPAL bhopal.ac.in		
		TERM END EXAMINATIONS (TEE) -	December 2021- Januar	y 2022	
Program	nme	: B.Tech	Semester	: Fall 2021-22	
Course		: ELECTRIC CIRCUITS AND SYSTEMS	Code	: EEE1001	
Faculty	Faculty : Prof. Mayank Gupta		Slot/ Class No.	: F11+F12+F13/0063	
Time		: 1 ½ hours	Max. Marks	: 50	
		Answer ALL the Q	uestions		
Q. No.		Question Descriptio	n	Marks	
		PART - A (30 M	(arks)		
		of 12 V and an internal resistance of 2 Ω and Ba resistance of 1 Ω . Using nodal analysis to detern and the load current, as shown in figure 1. A A B II 2 Ω E II 2 Ω E II 2 ∇ II A II C Figure I OR	mine the current supplied $I = \frac{10 \Omega}{2}$	by each battery	
	1	A rectangular shape iron core has an air gap of 0 through iron is 15 cm. The relative permeability The cross-sectional area of the core is 2 cm. Ca flux of 4 mWb in the core.	of iron is 3000. The coil	has 2500 turns.	
2	(a) Draw and identify the difference between DC Motor and Induction motor and clearly identify which of the parts in are rotating and which of them are stationary.				
	(b) .	OR A single turn coil of radius 2 cm is carrying a cu (i) The flux density at the centre of the c (ii) The flux density in the perpendicular coil.	coil.	cm from the	
3		Distinguish between an intrinsic and extrinsic s material and an n-type material?	emiconductor material. V	What is a p-type 10	
		OR			

the 16 Ω resistance in the following network is 0.5 A, as shown in figure 2. $ \begin{array}{c} & & & & \\ & $	(b)	Design a half adder using NOR – NOR logic also explain the truth table.	10
the 16 Ω resistance in the following network is 0.5 A, as shown in figure 2. $ \begin{array}{c} & & & & \\ & $		PART - B (20 Marks)	
	4	the 16 Ω resistance in the following network is 0.5 A, as shown in figure 2. $ \begin{array}{c} $	10
selection input works with truth table.	5	Design a 1x4 de-multiplexer using AND and NOT gate configuration, explain how data	10